当前位置:首页 > 试题 > 数学试题

六年级比的应用题

时间:2024-04-14 08:39:11
六年级比的应用题

六年级比的应用题

六年级比的应用题1

教学目的

1.通过解答一组相关的应用题,使学生进一步理解复合应用题是怎样在简单应用题的基础上发展起来的.

2.使学生进一步掌握分析应用题的方法,进一步提高学生分析和解答应用题的能力.

3.培养学生认真负责的态度和良好的学习习惯.

教学重点

能够掌握复合应用题的结构,正确解答复合应用题.

教学难点

使学生掌握复合应用题的关系.

教学过程

一、基本训练.

1.口算.

2.54 127+28 0.37+1.6 8816

3.37+6.63 8.40.7 0.1258 1.02-0.43

1.25+ 1 16

2.要求下面的问题需要知道哪两个条件?

(1)实际每天比原计划多种多少棵?

(2)桃树的棵数是梨树棵数的多少倍?

(3)五年级平均每人捐款多少元?

(4)这堆煤实际烧了多少天?

(5)剩下的书还需要多少小时能够装订完?

(6)小明几分钟可以从家走到学校?

教师总结:

应用已经学过的数量关系,根据题目中的问题考虑需要哪两个直接条件,是我们分析和解答简单应用题的关键.

二、归纳整理.

揭示课题:这节课,我们复习复合应用题(板书课题).

(一)教学例2:

a.学生夏令营组织行军训练,原计划每小时走3.75千米;实际每小时走4.5千米.实际比原计划每小时多走多少千米?

b.学校夏令营组织行军训练,原计划3小时走完11.25千米;实际每小时走了4.5千米.实际比原计划平均每小时多走多少千米?

c.学校夏令营组织行军训练,原计划3小时走完11.25千米;实际2.5小时走完原定路程.实际比原计划平均每小时多走多少千米?

1.指名读题,学生独立解答.(学生板演)

2.小组讨论:这三道题都有什么联系?这三道题有什么区别?

联系:这三道题说的是同一件事,要求的问题也相同,都是求实际比原计划平均每小时多走多少千米?要求最后问题都需要先知道原计划每小时走的千米数和实际每小时走的千米数.

区别:

a、实际每小时走的和原计划每小时走的千米数都是已知的,只需要一步计算;

b、实际每小时走的千米数是已知的.原计划每小时走的千米数是未知的,需要两步计算;

c、实际每小时走的千米数和原计划每小时走的千米数都是未知的,需要三步计算.

3.教师质疑:对于不能一步直接求出结果的应用题,我们应该怎样进行分析呢?请你们以小组为单位试着分析b、c量道例题.

4.教师总结:从上面这组题我们可以看出,复合应用题都是由几个简单一步应用题组合而成的.在分析数量关系时我们可以从所求问题出发逐步找出所需要的已知条件,直到所需条件都是题目中的已知的为止.

5.检验应用题的方法.

我们想知道此题目做的对不对,你有什么好办法吗?

(1)按照题意进行计算;

(2)把所求得的问题作已知条件,按照题意倒着算,看最后结果是否符合题意.

三、巩固反馈.

1.解答并且比较下面两道应用题,说说它们之间有什么区别?

(1)时新手表厂原计划25天生产手表1000只,实际每天生产50只.实际比原计划提前几天完成任务?

(2)时新手表厂原计划25天生产手表1000只,实际比计划提前5天完成任务.实际每天生产手表多少只?

2.判断:下面列式哪一种是正确的?

(1)一个修路队要筑一条长2100米的公路,前5天平均每天修240米,余下的任务要求3天完成,平均每天要修多少米?

A:2100-24053B:(2100-240)3

C:(2100-2405)3

(2)一个装订小组要装订2640本书,3小时装订了240本,照这样计算,剩下的书还需要几小时才能够装完?

A:(2640-240)240B:2640(2403)

C:(2640-240)(2403)

(3)一个机耕队用拖拉机耕6.8公顷棉田,用了4天,照这样计算,再耕13.6公顷棉田,一共需要用多少天?

A:13.6(6.84)B:13.6(6.84)4

C:(13.6+6.8)(6.84)

(4)一个筑路队铺一段铁路,原计划每天铺路3.2千米,15天铺完,实际每天比原计划多铺路0.8千米,实际多少天能够铺完这段路?

A:3.2150.8B:3.2 15(3.2-0.8)

C:3.2 15(3.2+0.8)

(5)某化工厂采用新技术后,每天用原料14吨.这样,原来用7天的原料,现在可以用10天.这个厂现在比过去每天节约多少吨原料?

A:14710-14B:14107-14

C:14-14107D:14-14710

四、课堂总结.

通过今天的学习你有什么收获?

六年级比的应用题2

教学目标

1、认识分数应用题的特点,理解分数乘法应用题的解题思路和方法,认识分数乘法应用题的基本数量关系。

2、认识求一个数的几分之几是多少的应用题和求一个数的几倍是多少的应用题之间的联系。

教学重难点

理解分数乘法应用题的解题思路和方法,认识分数乘法应用题的基本数量关系。

教学准备

教学过程设计

教学内容

师生活动

备注

一、 复习引新

二、教学新课

三、巩固练习

1、出示复习题(见幻灯课件)

问:把哪个量看作单位1?题中每个分数表示的意义是什么?

2、做15页复习题

问:为什么要用乘法计算?这里的一个数和分数相乘表示什么意义?

3、引入新课--学习分数应用题

1、教学例1

(1)出示例1,学生读题

找条件,想问题,画线段图,想方法

(2)分析两种不同的方法

找相同点、不同点以及存在的联系

(3)巩固练习做17页练一练1

2、教学例2

(1)出示例1,学生读题

找条件、想问题、画线段图

(2)列式并说说想的过程

重点指出把谁看作单位1

3、教学想一想

(1)读题、思考、画线段图

问把谁看作单位1

(2)列式

……此处隐藏6608个字……>二、新授。

1.教学例1。

出示例1:学校买来100千克白菜,吃了,吃了多少千克?

(1)指名读题,说出条件和问题。

(2)引导学生画出线段图,并在线段图上标出题目中的条件和问题。

先画一条线段,表示100千克白菜。

吃了,吃了谁的?(100千克白菜)要把100千克白菜平均分成5份,吃了4份,怎样表示?

教师边说边画出下图:

(3)分析数量关系,启发解题思路。

引导学生说出:吃了,是吃了100千克的,所以把100千克看作单位1,要求100的是多少,根据一个数乘以分数的意义,直接用乘法计算。

(4)学生列式计算:=100(20)?=80

(5)再让学生分析一下数量关系。

(6)练一练:完成第18页做一做第1题。

评讲订正时,让学生分析一下数量关系。

2.教学例2。

出示例2:小林身高米,小强身高是小林的,

小强身高多少米?

(1)明确题意,指名读题,说出条件和问题。

(2)让学生画出线段图并标明条件和问题。

①要画几条线段表示题里的数量关系?

②引导学生根据题里的条件,确定谁的身高要画得长一些,谁的身高画得短一些。

③第一条线段表示谁的身高?画了第一条线段表示小林的身高,该怎样画第二条线段表示小强的身高。

启发学生:根据小强身高是小林的,要把表示小林的线段平均分成8份,在它的下面画出其中7份的长度代表小强的身高。

教师边启发边画出如下线段图:

(3)分析数量关系,启发解题思路。

启发学生思考:小强身高是小林的,就要把小林的身高看作单位1,要求小强的身高,就要求出小林身高的是多少,即求的是多少,根据分数乘法的意义,用乘法计算。

(4)让学生列式计算。

(5)如果把上题改成下面的题:

小强身高米,小林身高是小强的倍,小林身高多少米?

问:哪条线段画得长一些?怎样画?

把谁看作单位1为什么?

怎样列式?

教师边启发边画出如下线段图:

(6)教师说明:

一个数是另一个数的几分之几,可以是真分数,也可以是带分数。这里是带分数,把化成假分数,上题也可以改成小林身高是小强的

指出:在这种情况下乘得的积大于原来的被乘数。

(7)做一做。

完成课本14页做一做的第3题。

三、巩固练习

1.完成课本第14页做一做的第3题。

学习列式计算后,指名让学生分析数量关系。

2.完成练习四的第5题。

说明:一个数是另一个数的几分之几,不可以是真分数,也可以是带分数,还可以是整数。

订正时指名分析。

四、全课小结。

今天我们学习的分数乘法一步应用题,应根据一个数是另一个数的几分之几分析数量关系,应用一个数乘以分数的意义来解答。

五.作业。

练习四的第1~4题。

六年级比的应用题15

教学内容:

教科书15页,例2及做一做 ,练习四8─10题。

教学目的:

(1)、会画线段图分析分数乘法两步应用题的数量关系。

(2)、掌握分数两步连乘应用题解答方法,并能正确解答。

(3)、进一步培养学生初步的逻辑思维能力。

教学重点:分析分数乘法两步应用题的数量关系。

教学难点:抓住知识关键,正确、灵活判断单位1。

教学过程:

(一)、复习引入:

1、先说说各式的意义,再口算出得数。

╳ ╳

2、指出下面含有分数的句子中,把谁看作单位1。

(1)乙数是甲数的 。(甲数)

(2)乙数的 相当于甲数。(乙数)

(3)大鸡只数的 等于小鸡的只数。(大鸡)

(4)大鸡的只数相当于小鸡的 。(小鸡)

(二)、探究新知:

1、出示例2:小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的钱是小华的 。小新储蓄了多少元?

(1)审题:

全体默读,再指名读,说出已知条件和问题。

师生边讨论边画出线段图。

先画一条线段表示谁储蓄的钱数?为什么?再画一条线段表示谁储蓄的钱数?画多长?根据什么?

(根据:小华的钱数是小亮的 ,把小亮的钱数看作单位1,平均分成6份,再画出与这样的5份同样长的线段表示小华储蓄的钱数)

然后画一条线段表示谁储蓄的钱数?画多长?根据什么?

(又根据:小新的钱数是小华的 ,把小华的钱数看作单位1,平均分成3份,画出与这样的2份同样长的线段表示小新储蓄的钱数)。

小亮

18元

?元

?元

小华

小新

(2)分析数量关系:

引导学生从已知条件分析:根据小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,可以把谁看作单位1,求出谁的钱数?再根据小新储蓄的钱是小华的 ,又可以把谁看作单位1,求出谁的钱数?

也可以多问题分析:要求小新储蓄多少元,就要知道谁的钱数?这个数量题目中告诉我们了吗?所以要先求出谁的钱数?再求出谁的钱数?

(3)确定每一步的算法,列出算式。

怎么求小华的钱数?

根据小华的钱数是小亮的 ,把小亮的钱数看作单位1,求小华储蓄多少钱就是求18元的 是多少,用乘法计算。

板书:18╳ =15(元)

怎么求小华的钱数?

根据小新的钱数是小华的 ,把小华的钱数看作单位1,求小新储蓄多少钱就是求15元的 是多少,用乘法计算。

板书:15╳ =10(元)

把上面的分步算式列成综合算式:

板书:18╳ ╳ =10(元)

(4)检验写答:

答:小新储蓄了10元。

2、做一做。

学生独立画出线段图,教师巡视指导。

3、归纳:今天学习的是连续两次求一个数据的几分之几是多少的应用题,解答这类题的关键是弄清第一步把谁看作单位1,第二步把谁看作单位1。

(三)、课堂练习:

独立完成练习四的第8、9、10题。

板书设计:

例2:小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的钱是小华的 。小新储蓄了多少元?

小亮

18元

?元

?元

小华

小新

18╳ =15(元)

15╳ =10(元)

18╳ ╳ =10(元)

答:小新储蓄了10元。

《六年级比的应用题.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式